A hybrid CMV-H1 construct improves efficiency of PEI-delivered shRNA in the mouse brain
نویسندگان
چکیده
RNA-interference-driven loss of function in specific tissues in vivo should permit analysis of gene function in temporally and spatially defined contexts. However, delivery of efficient short hairpin RNA (shRNA) to target tissues in vivo remains problematic. Here, we demonstrate that efficiency of polyethylenimine (PEI)-delivered shRNA depends on the regulatory sequences used, both in vivo and in vitro. When tested in vivo, silencing of a luciferase target gene by shRNA produced from a hybrid construct composed of the CMV enhancer/promoter placed immediately upstream of an H1 promoter (50%) exceeds that obtained with the H1 promoter alone (20%). In contrast, in NIH 3T3 cells, the H1 promoter was more efficient than the hybrid construct (75 versus 60% inhibition of target gene expression, respectively). To test CMV-H1 shRNA efficiency against an endogenous gene in vivo, we used shRNA against thyroid hormone receptor alpha1 (TRalpha1). When vectorized in the mouse brain, the hybrid construct strongly derepressed CyclinD1-luciferase reporter gene expression, CyclinD1 being a negatively regulated thyroid hormone target gene. We conclude that promoter choice affects shRNA efficiency distinctly in different in vitro and in vivo situations and that a hybrid CMV-H1 construct is optimal for shRNA delivery in the mouse brain.
منابع مشابه
Adenovirus-based short hairpin RNA vectors containing an EGFP marker and mouse U6, human H1, or human U6 promoter.
BioTechniques 625 Adenoviral shuttle vectors to express short hairpin RNAs (shRNA) using RNA polymerase III (RNA pol III) promoters (mouse U6, human H1, or human U6) have been constructed in several laboratories including Welgen (Worcester, MA, USA), BD Biosciences (San Jose, CA, USA), Invitrogen (Carlsbad, CA, USA), and GeneScript (Piscataway, NJ, USA). Welgen and Invitrogen developed adenovir...
متن کاملpHYPER, a shRNA vector for high-efficiency RNA interference in embryonic stem cells.
RNA interference (RNAi) is a powerful method to generate loss-of-function phenotypes. Plasmid vectors with RNA polymerase III promoters have been developed to express short hairpin RNAs (shRNAs) in mammalian cells. In order to optimize the efficiency of these vectors in embryonic stem (ES) cells, we have constructed and tested several plasmids, based on the H1 promoter; that direct the expressi...
متن کاملShRNA-mediated knock-down of CD200 using the self-assembled nanoparticle-forming derivative of polyethylenimine
Objective(s): ShRNA-mediated silencing strategy is considered to be a potent therapeutic approach. The present study aimed to assess the ability of the previously prepared polyethylenimine (PEI) derivative for the shRNA knock-down of the CD200 gene on the cells obtained from the patients with chronic lymphocytic leukemia (CLL). Materials and Methods: Since there are several investigations...
متن کاملOptimization and comparison of knockdown efficacy between polymerase II expressed shRNA and artificial miRNA targeting luciferase and Apolipoprotein B100
BACKGROUND Controlling and limiting the expression of short hairpin RNA (shRNA) by using constitutive or tissue-specific polymerase II (pol II) expression can be a promising strategy to avoid RNAi toxicity. However, to date detailed studies on requirements for effective pol II shRNA expression and processing are not available. We investigated the optimal structural configuration of shRNA molecu...
متن کاملThe Demonstration of Polyethylenimine Mediated Gene Transfer into the Rodent Hypothalamus Results in Persistent Over-Expression and Phenotypic Change
Polyethylenimine (PEI) has been proposed as a non-viral vector, and has been successfully used to transfer reporter genes into the central nervous system (CNS), kidneys, and lungs of adult mice. Neuropeptide Y (NPY) is a peptide expressed in the hypothalamus and is important in the regulation of body weight. Using PEI combined with stereotactic microinjection, we have successfully transferred c...
متن کامل